A functional role for intrinsic disorder in the tau-tubulin complex.
نویسندگان
چکیده
Tau is an intrinsically disordered protein with an important role in maintaining the dynamic instability of neuronal microtubules. Despite intensive study, a detailed understanding of the functional mechanism of tau is lacking. Here, we address this deficiency by using intramolecular single-molecule Förster Resonance Energy Transfer (smFRET) to characterize the conformational ensemble of tau bound to soluble tubulin heterodimers. Tau adopts an open conformation on binding tubulin, in which the long-range contacts between both termini and the microtubule binding region that characterize its compact solution structure are diminished. Moreover, the individual repeats within the microtubule binding region that directly interface with tubulin expand to accommodate tubulin binding, despite a lack of extension in the overall dimensions of this region. These results suggest that the disordered nature of tau provides the significant flexibility required to allow for local changes in conformation while preserving global features. The tubulin-associated conformational ensemble is distinct from its aggregation-prone one, highlighting differences between functional and dysfunctional states of tau. Using constraints derived from our measurements, we construct a model of tubulin-bound tau, which draws attention to the importance of the role of tau's conformational plasticity in function.
منابع مشابه
Heterogeneous Tau-Tubulin Complexes Accelerate Microtubule Polymerization.
Tau is an intrinsically disordered protein with a central role in the pathology of a number of neurodegenerative diseases. Tau normally functions to stabilize neuronal microtubules, although the mechanism underlying this function is not well understood. Of note is that the interaction between tau and soluble tubulin, which has implications both in understanding tau function as well as its role ...
متن کاملLRRK2 Phosphorylates Tubulin-Associated Tau but Not the Free Molecule: LRRK2-Mediated Regulation of the Tau-Tubulin Association and Neurite Outgrowth
Leucine-rich repeat kinase 2 (LRRK2), a large protein kinase containing multi-functional domains, has been identified as the causal molecule for autosomal-dominant Parkinson's disease (PD). In the present study, we demonstrated for the first time that (i) LRRK2 interacts with tau in a tubulin-dependent manner; (ii) LRRK2 directly phosphorylates tubulin-associated tau, but not free tau; (iii) LR...
متن کاملTau phosphorylation at serine 396 and serine 404 by human recombinant tau protein kinase II inhibits tau's ability to promote microtubule assembly.
In Alzheimer's disease, hyperphosphorylated tau is an integral part of the neurofibrillary tangles that form within neuronal cell bodies and fails to promote microtubule assembly. Dysregulation of the brain-specific tau protein kinase II is reported to play an important role in the pathogenesis of Alzheimer's disease (Patrick, G. N., Zukerberg, L., Nikolic, M., De La Monte, S., Dikkes, P., and ...
متن کاملPhosphorylated tau can promote tubulin assembly.
Phosphorylation can affect the function of microtubule-associated protein tau. Here, the human brain tau with 441 amino acids was phosphorylated by cyclic-AMP-dependent protein kinase (PKA) or glycogen synthase kinase-3beta. PKA-phosphorylated tau (2.7 mol phosphates/mol) does not promote tubulin assembly as judged by spectrophotometric and atomic force microscopy measurements, unless trimethyl...
متن کاملCharacterization of beta tubulin DNA sequences within the Candida parapsilosis complex
Abstract Background and Purpose: Candida parapsilosis is a common cause of candidemia in children and onco-hematologic patients as well as in patients with septic arthritis, peritonitis, vaginitis, and nail and skin infections. Here, we evaluated intra- and inter-species beta tubulin DNA sequence variation within the C. parapsilosis complex with a view to establishing its utility in the identi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 50 شماره
صفحات -
تاریخ انتشار 2016